С.S. Снем. Сомм., 1980	653
Carbenoids by Deoxygenation of Carbonyl Compounds with Chloromethylsila. By Clifford L. Smith, James Arnett, and James Ezike	nes

By Clifford L. Smith, James Arnett, and James Ezike (Department of Chemistry, Albany State College, Albany, Georgia 31705)

Summary Deoxygenation of benzophenone, benzaldehyde, and cyclohexanone with chloromethylsilanes and zinc-

copper couple in ether is reported to yield 2,2,2-triphenylacetophenone, a mixture of deoxybenzoin and diphenyl-

acetaldehyde, and a bicyclic ketone with the proposed 2-oxocycloheptanespirocyclohexane structure, respectively; a carbene mechanism is proposed.

A REACTION of chlorotrimethylsilane with cyclohexanone and zinc metal in ether has been reported to yield only cyclohexene in ca. 72% yield. We now report results obtained via a modification of this procedure.

In a typical experiment, a solution of benzophenone (0.3 mol) dissolved in ca. 200 ml of ether was added dropwise to a mixture of dichlorodimethylsilane (0.4 mol), zinccopper couple (0.5 g-atom), and ca. 100 ml of ether, producing an exothermic reaction. After continuous stirring for ca. 12 h at room temperature, the white precipitate formed was filtered off and washed several times with water. Recrystallization of the 'dry' solid from hot benzene yielded 2,2,2-triphenylacetophenone (70%), equation (1). A similar reaction of benzaldehyde gave deoxybenzoin (1) and diphenylacetaldehyde (2) in a total yield of 45%, equation (2). The mechanism in equation (3) involving the formation of a carbenoid and its subsequent addition across the carbonyl group of benzaldehyde yielding the intermediate trans-stilbene oxide is invoked for reaction (2). Zinc chloride induced ring-opening of this incipient epoxide, prior to a common hydride or phenyl shift, would account for the formation of compounds (1) and (2), respectively,² equation (4).

PhCOPh •
$$Me_2SiCl_2$$
 $\xrightarrow{Zn-Cu}$ Ph₃CCOPh (1)

$$PhCHO + Me_2SiCl_2 \xrightarrow{Zn-Cu} PhCH_2COPh + Ph_2CHCHO (2)$$

$$(1) (2)$$

$$PhCHO \xrightarrow{Me_2SiCl_2} PhCH^{\circ}] \xrightarrow{PhCHO} PhCH-CHPh$$
 (3)

$$PhCH-CHPh \xrightarrow{ZnCl_2} (1) + (2)$$
 (4)

W. B. Motherwell, J. Chem. Soc., Chem. Commun., 1973, 935.
 R. E. Parker and N. S. Isaacs, Chem. Rev., 1959, 59, 737.

Deoxygenation of cyclohexanone under comparable conditions afforded a viscous liquid (b.p. 62-64 at $0\cdot15$ mmHg) whose elemental analysis, molecular weight determination, and i.r. spectral data are consistent with the molecular formula $C_{12}H_{20}O$ of a saturated cyclic ketone. Based upon the proposed mechanism of deoxygenation of benzaldehyde, but not confirmed unambiguously by its complex 1H n.m.r. spectrum, 2-oxocycloheptanespirocyclohexane is a reasonable structure for this ketone.

We have also discovered that benzaldehyde, benzophenone, and cyclohexanone may be deoxygenated in ether by chlorotrimethylsilane and zinc-copper couple in the presence of anhydrous zinc bromide, affording the same products as those obtained using dichlorodimethylsilane and zinc-copper couple, but in lower yields. In an experiment in which deoxygenation of benzaldehyde with chlorotrimethylsilane, zinc-copper couple, and a catalytic amount of zinc bromide was conducted in an excess of cyclohexene, 7-phenylnorcarane (15%) was obtained, confirming the intermediate formation of the proposed carbenoid, equation (5).

PhCHO
$$\frac{Me_3SiCl}{Zn-Cu,ZnBr_2}$$
 [PhCH:] $\frac{C_6H_{10}}{}$

We are grateful to the Petroleum Research Foundation and the National Institutes of Health for financial support.

(Received, 11th April 1980; Com. 379.)